Photoprecursor approach as an effective means for preparing multilayer organic semiconducting thin films by solution processes

نویسندگان

  • Yuji Yamaguchi
  • Mitsuharu Suzuki
  • Takao Motoyama
  • Shuhei Sugii
  • Chiho Katagiri
  • Katsuya Takahira
  • Shinya Ikeda
  • Hiroko Yamada
  • Ken-ichi Nakayama
چکیده

The vertical composition profile of active layer has a major effect on the performance of organic photovoltaic devices (OPVs). While stepwise deposition of different materials is a conceptually straightforward method for controlled preparation of multi-component active layers, it is practically challenging for solution processes because of dissolution of the lower layer. Herein, we overcome this difficulty by employing the photoprecursor approach, in which a soluble photoprecursor is solution-deposited then photoconverted in situ to a poorly soluble organic semiconductor. This approach enables solution-processing of the p-i-n triple-layer architecture that has been suggested to be effective in obtaining efficient OPVs. We show that, when 2,6-dithienylanthracene and a fullerene derivative PC71BM are used as donor and acceptor, respectively, the best p-i-n OPV affords a higher photovoltaic efficiency than the corresponding p-n device by 24% and bulk-heterojunction device by 67%. The photoprecursor approach is also applied to preparation of three-component p-i-n films containing another donor 2,6-bis(5'-(2-ethylhexyl)-(2,2'-bithiophen)-5-yl)anthracene in the i-layer to provide a nearly doubled efficiency as compared to the original two-component p-i-n system. These results indicate that the present approach can serve as an effective means for controlled preparation of well-performing multi-component active layers in OPVs and related organic electronic devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution-processed zinc tetrabenzoporphyrin thin-films and transistors

a r t i c l e i n f o Thin-films and organic field-effect transistors fabricated from a solution-processable precursor of zinc tetra-benzoporphyrin (ZnTBP) are reported. Amorphous, insulating precursor films were deposited by spin-casting and thermally converted into polycrystalline, semiconducting thin-films comprising grains on the order of 5 μm in diameter. Thin-film X-ray diffraction indica...

متن کامل

Solution-deposited organic-inorganic hybrid multilayer gate dielectrics. Design, synthesis, microstructures, and electrical properties with thin-film transistors.

We report here on the rational synthesis, processing, and dielectric properties of novel layer-by-layer organic/inorganic hybrid multilayer dielectric films enabled by polarizable π-electron phosphonic acid building blocks and ultrathin ZrO(2) layers. These new zirconia-based self-assembled nanodielectric (Zr-SAND) films (5-12 nm thick) are readily fabricated via solution processes under ambien...

متن کامل

Discerning Variable Extents of Interdomain Orientational and Structural Heterogeneity in Solution-Cast Polycrystalline Organic Semiconducting Thin Films

By spatially resolving the polarized ultrafast optical transient absorption within several tens of individual domains in solution-processed polycrystalline smallmolecule organic semiconducting films, we infer the domains’ extents of structural and orientational heterogeneity. As metrics, we observe variations in the time scales of ultrafast excited state dynamics and in the relative strength of...

متن کامل

Few-layer, large-area, 2D covalent organic framework semiconductor thin films.

In this work, we synthesize large-area thin films of a conjugated, imine-based, two-dimensional covalent organic framework at the solution/air interface. Thicknesses between ∼2-200 nm are achieved. Films can be transferred to any desired substrate by lifting from underneath, enabling their use as the semiconducting active layer in field-effect transistors.

متن کامل

Fully Solution-Processed Flexible Organic Thin Film Transistor Arrays with High Mobility and Exceptional Uniformity

Printing fully solution-processed organic electronic devices may potentially revolutionize production of flexible electronics for various applications. However, difficulties in forming thin, flat, uniform films through printing techniques have been responsible for poor device performance and low yields. Here, we report on fully solution-processed organic thin-film transistor (TFT) arrays with g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014